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backscattering in terms of generalised Bessel functions 
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Theoretical Physics Institute, University of Innsbruck, A-6020 Innsbruck, Austria 

Received 25 June 1980, in final form 11 August 1980 

Abstract. Within the framework of classical electrodynamics, we present a quantitative 
analysis of the intensity-dependent distribution in frequency and angle of the spontaneous 
incoherent radiation that arises from the collision of a beam of relativistic electrons with a 
very intense, linearly polarised plane electromagnetic wave. As a useful corollary, this 
investigation establishes a uniform asymptotic expansion of an important class of functions 
that frequently occurs in the literature under the name of ‘generalised Bessel functions’, but 
for which to date only qualitative results are employed for the most interesting range of large 
values of its variables. 

1. Introduction 

Stimulated by the successful observation of frequency up-conversion and power gain in 
microwave scattering from a relativistic electron beam front (Granatstein et a1 1976, 
Buzzi et a1 1977, Pasour et a1 1977), as first predicted by Motz (1951) and Landecker 
(1952), and by the current availability of very high-power electromagnetic radiation in 
the near-infrared through the glass laser technology, we have reconsidered the classical 
problem of Goldman (1964) who studied the intensity-dependent modifications to 
Klein-Nishina’s formula in the spontaneous inverse Compton scattering arising from 
the reflection of a high-intensity laser pulse from relativistic electrons. 

This reconsideration was motivated by the fact that although Goldman (1964) gave 
the integral representation of the pertinent differential cross section for the general case 
of an elliptically polarised incident laser beam, he was only able to reduce this cross 
section to closed form for the particular case of circular polarisation, where it can be 
expressed through a finite number of ordinary Bessel functions of integer order. 
However, circular polarisation of the incident beam is of little relevance, since the 
nonlinear effects under study, in order to dominate the emitted radiation pattern, 
require the most powerful laser systems currently available, which as is well known have 
to be constructed for practical reasons so as to emit linearly polarised light, which- 
again for practical reasons-cannot be converted to circularly polarised light. Hence, 
the only case of experimental interest is the evaluation of Goldman’s cross section for 
linear incident polarisation. 

This fact alone would perhaps not justify devoting a separate investigation to 
Goldman’s problem for linear incident polarisation, in particular, as the cross section 
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presented in Q 2 derives from a considerably simplified model of the real situation on the 
one hand, and on the other places extreme requirements on the intensity of the primary 
light source, although a number of theoretical investigations have recently been based 
on the availability of laser intensities of lo1’ W cm-’ and more in the near future (see 
e.g. Waltz and Manley 1978, Tajima and Dawson 1979). But the point is that for linear 
incident polarisation Goldman’s cross section is expressible through a finite number of 
so-called ‘generalised Bessel functions’, an important class of functions, which 
frequently occurs in the literature in the study of various elementary scattering 
processes in the simultaneous presence of an intense, linearly polarised laser field, for 
which a description in the electric dipole approximation is inadequate (see e.g. Brown 
and Kibble 1964, Yakovlev 1966, Oleinik 1967, Denisov and Fedorov 1968, Brehme 
1971, Lyul’ka 1975, 1977, Ehlotzky 1978, Kelsey and Rosenberg 1979, Schlessinger 
and Wright 1979). While, in the uninteresting case of such small intensities that the 
process under study differs very little from the corresponding one without the presence 
of a laser field, the generalised Bessel functions can be expanded in a rapidly convergent 
series of products of ordinary Bessel functions (Brown and Kibble 1964, Ehlotzky 
1978, Kelsey and Rosenberg 1979), this procedure is not feasible in the interesting case 
of high intensities, and in fact none of the above references indicates an efficient method 
to evaluate these functions under these circumstances. Such a method is urgently called 
for, however, in order to assess the magnitude of some of the effects involved in more 
than just a rough qualitative manner and in order to compare quantitatively the results 
of different approaches. 

We will therefore take the following evaluation of Goldman’s cross section for a 
linearly polarised incident laser beam as an occasion to discuss in detail and in a 
self-contained way the derivation of an asymptotic expansion of the generalised Bessel 
functions, which is uniformly valid for such intensities where the standard methods are 
inapplicable. 

2. Model and differential scattering cross section 

As a model for the spontaneous incoherent scattering arising from the collision of a 
relativistic electron beam with an intense laser pulse, we consider the following 
simplified process, which was originally studied by Goldman (1964). A homogeneous 
beam of relativistic electrons is travelling with uniform velocity along the negative 
z-axis of some Cartesian coordinate system. This model beam differs from a realistic 
situation by the neglect of both a density gradient and a velocity distribution. In our 
model we furthermore assume the density to be low enough so that collective effects 
among the electrons can be neglected. This electron beam is taken to collide with a very 
intense pulse of near-infrared laser radiation, propagating along the positive z-axis and 
being linearly polarised in the x direction, which is described by a plane wave, 
neglecting the fact that in an experiment an extremely powerful laser system would have 
to be very tightly focussed in order to reach the threshold of 10” W cm-’ (Tajima and 
Dawson 1979), beyond which the scattered radiation is dominated by the nonlinearities 
of the interaction. If, as a final simplifying assumption, radiation reaction is neglected, 
then the pertinent cross section for the distribution of the scattered radiation in 
frequency and angle is standard and has been used by a number of authors. 

In order to save space, we rely on results and notation of related work (Leubner 
1978), where the single-particle cross section, corresponding to the appropriate regime 
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of incoherent scattering (because of the envisaged optical primary wavelength (Stoly- 
arov 1977)), was found from a purely classical investigation to be given by 

where 

(where a partial integration on the z component of ZL has been performed in order to 
restrict the parameter A in ( 5 )  to only two values A = 0, 1) and 

~ ( 7 7 )  = i{v +[2vu sin 77 + (u2/4) sin 277]/ w). (3) 

da(w)/dfl  is the scattered power per unit incident intensity, per unit band width and per 
unit solid angle, and the meaning of the other symbols in (1)-(3) is as follows. 
ro = e 2 / m c 2  is the classical electron radius, b = [(l +po)/( l  with the initial 
velocity Po= -poez of the electron. w = w i ( t - z / c )  is the phase of the incoming 
electromagnetic wave, with w ,  being the incident frequency as measured in the 
laboratory frame, in which we work throughout, and p = eEo /mco i  is the intensity 
parameter with Eo the electric field strength of the incoming wave. s is the direction of 
observation with components (cos 4 sin 9, sin 4 sin 6 ,  cos a ) ,  v = p sin(6/2)/b, v = 
cos q5 cos(6/2), w = 1 + v2/2-sin2(6/2)(1 - b-'), and w is the scattered frequency as 
observed in the laboratory frame, which is confined by the 6 functions in (1) to the 
discrete Doppler shifted values w = I@,/ w. 

As is to be expected, the classical cross section (1) differs from Goldman's (1964) 
quantum mechanical one only by terms of the order of hwi/mc2,  which for the Nd:glass 
laser wavelength is approximately 2.5 x and hence sufficiently small. 

By rewriting the squared modulus in (1) as 

1s X 1 1 l 2 =  (cot(9/2)J1,0+p cos q5J1,1/b)~+(p sin 4J1,1lbl2, (4) 

we reduce the evaluation of the cross section (1) to the evaluation of the integrals 

which, in the notation of Brown and Kibble (1964) and Kelsey and Rosenberg (1979), 
can be expressed through generalised Bessel functions Cl(p, 8, p )  as 

Jl.0 = 2rC~(2lvu/w, lu2/2w, 0) (6a)  
and 

J/,* = r[C1,1(2lvv/w, lv2/2w, O ) +  C1-1(2lvv/w, lv2/2w, O ) ] .  (6b) 

Hence, by establishing in the next section a uniform asymptotic expansion of the 
integrals we simultaneously provide the same for the generalised Bessel functions 
Cl(p, 6, p )  with p = 0, this being the only case of practical importance since it cor- 
responds to a linearly polarised laser beam, while p # 0 corresponds to elliptic polaris- 
ation (see e.g. Brown and Kibble 1964). 
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3. Uniform asymptotic expansion of scattering cross section 

The standard procedure in nearly all the work where generalised Bessel functions have 
appeared has been to resort to circular polarisation, as in the case of Goldman (1964), 
for then the generalised Bessel functions reduce to ordinary ones (see e.g. Brown and 
Kibble 1964, Kelsey and Rosenberg 1979), although circular polarisation is of little 
experimental relevance since all this work has been concerned with modifications to 
various scattering processes under the influence of an intense laser field, which as 
remarked in the Introduction is invariably linearly polarised. Alternatively, the rela- 
tion 

has been used (see e.g. Brown and Kibble 1964, Ehlotzky 1978, Kelsey and Rosenberg 
1979), which like any straightforward series expansion of the original integral (5) is only 
practicable for small values of the parameters 1, p and 8, for then it is rapidly convergent. 
However, one is interested in the behaviour of (6a, b )  for large values of these 
parameters, in which case the computation of (6a) via (7) becomes excessively time 
consuming. Consequently, the use of (7)-although seemingly carrying the analytical 
development one step further-really takes one farther from obtaining actual 
numbers, which in the literature is borne out by the almost complete absence 
of graphical representations of physical quantities that have been formulated 
in terms of this expansion (Brown and Kibble 1964, Ehlotzky 1978, Kelsey and 
Rosenberg 1979). 

Instead, we go back to the original integral representation ( 5 ) ,  which as it stands 
cannot be used for large values of the parameters either, because of the rapid 
oscillations of the integrand. However, we have shown in preliminary investigations of 
related problems (Leubner 1978, 1979) that the integral representation (5) is well 
suited for standard asymptotic techniques as introduced by Chester et a1 (1957). 

In the following, we will therefore use the same approach to establish in a 
self-contained way a uniform asymptotic expansion of (5) beyond the leading term, 
which a graphical comparison with the result of an exact evaluation of (5) will 
convincingly prove to be highly satisfactory for all present purposes. As in our previous 
work (Leubner 1978, 1979), the first step consists in invoking Cauchy’s integral 
theorem to deform the original contour of integration from 0 to 27r along the real axis of 
the complex 7-plane, where rapid oscillations occur, in such a way that no oscillations 
occur along the new contour, which (if we neglect the slow variations due to the 
presence of cos 7)  is therefore characterised by Im[F(q)] being constant along it. The 
paths of constant Im[F(v)] through the endpoints of the original interval of integration 
along which Re[F(v)] decreases are easily seen to be the straight lines 7 = i y  and 
7 = 27r + i y  with 0 s y < a, if we set 7 = x + iy. It remains to connect the endpoints icu, 
and 27r +ice of these straight lines with a path of constant Im[F(7)]. To this end we first 
note that Re[F(q)] = -a both at 7 = icu, and at 7 =   IT + im. Since, as is well known, 
Re[F(v)] is monotonic along an Im[F(v)]=constant path if dF/dq is non-zero 
everywhere on it, this implies that the required path must pass through one or more 
saddle points of F(7), which are characterised by dF/dq = 0 and hence are points where 
the mapping z = F ( v )  is non-conformal. 

As we have shown (Leubner 1978, 1979), the saddle points of F(7) can easily be 
found in the case at hand, since they are determined by a quadratic equation in v cos 7 
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with solutions 
2 v COS T~ = --U * i[w - - (v'/2)1''~, 

where we can restrict the analysis to u 2 0  because (4) turns out to be invariant with 
respect to the substitutions c$ + c$ * T. The radicand is positive semidefinite since 
w - u 2 -  (v2/2) = cot2(8/2) sin2 c$ +sin2(8/2)/b2 2 0, so that throughout the range of 
allowed values of the parameters of our problem we have the same simple configuration 
of four saddle points, symmetrically situated in the strip ~ / 2  s x s 3 ~ / 2  of the complex 
q-plane, as shown in figures l (a)  and l ( b )  for two different sets of parameters. It 
therefore suffices to evaluate from (8) the coordinates of one of these saddle points, say 
the one denoted by SI in these figures, and we find 

xs = + v2/2) -[(w + y 2 / 2 ) 2 - 4 - U 2 v 2 ] 1 / 2 } / 2 v 2 7 j 1 / 2 ) ,  (9a 1 
y s  =cosh-'([i{(w + v2/2)+[(w + (96)  

The paths of constant imaginary part of F ( 7 )  through the saddle points are determined 
by 

and can be easily found in explicit form from ( 3 ) ,  e.g., for the saddle point SI, as 

y = cosh-'{(-u/v cos x ) * [ ( v / v  cos x ) ~ - ( x  -Im[F(.rls)])w/(v2 sin x cos x ) + $ ] ' / ~ } .  

Im[F(.l)l= Im[F(77s)l, (10) 

(11) 

/'- 
1 ,/' 

i 

I1 
+la 

1 
i m  

la 1 ( b )  

Figure 1. ( a ) ,  ( b )  7-plane location of the four saddle points SI, Si, Sz, S; and of the paths of 
steepest descent and of steepest ascent of F ( 7 )  as given by equation (3) (along which 
Re[F(rl)] decreases to -a and increases to fa, respectively) for two different sets of 
parameters {p ,  B , d ,  b} .  Open arrows indicate the original path of integration, equation (S) ,  
with rapid oscillations of the integrand; solid arrows indicate the deformed contour, 
equation (12), along which the integrand is essentially monotonic. 
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Note that the two signs in front of the square root reflect the existence of two solutions 
to (10) in the case of a simple saddle point like SI (i.e. dF/dq = 0, but d2F/dT2 # 0), one 
being a path of steepest descent, with Re[F(v)] decreasing as we go away from S1, the 
other a path of steepest ascent. In the present case, the required path of steepest 
descent extending from 77 = io0 through the saddle point SI to 77 = IT + io0 and denoted 
by C1 in figures l ( a )  and l ( b )  is obtained from (11)  by taking the positive sign in the 
interval 0 < x < 1 ~ 1 2 ,  the negative sign in the interval  IT/^ < x <xs, and again the 
positive sign in the interval xs < x  < IT. As shown in figures l ( a )  and l ( b ) ,  all steepest 
paths through the saddle points are situated symmetrically with respect to the straight 
lines y = 0 and x = IT. 

So far, we have established that the original integral with a rapidly oscillating 
integrand can be evaluated by a contour integral over a monotonic integrand, where the 
contour consists of the four portions from 77 = 0 to n = io0, then along the path C1 given 
by (11)  through the saddle point St to 77 = IT + ico, then further along the path C2 
obtained from ( 1  1)  by replacing x +   IT - x and xs + 277 - xs, yS + ys to 2.rr + ico, and 
then down to 7 =   IT, the original endpoint of integration, as shown in figures l ( a )  and 
l (b ) .  By virtue of the integer value of the parameter 1 and of the periodicity of F ( v ) ,  we 
easily find that the first and fourth contributions to our contour integral cancel out, and 
that the third contribution is just the complex conjugate of the second one, so that 

with C, the steepest-descent path ( 1 1 ) .  Note that the rapidly varying portion of the 
integrand, which for large 1 caused computational problems along the original contour 
of integration along the real axis, is now monotonic decreasing on either side of the 
saddle point and the more rapidly so the larger 1. 

For later comparison with the uniform asymptotic expansion of (12)  to be derived 
next, we computed the amplitude of the S functions ip the cross section ( 1 )  with the aid 
of (4)  and the exact contour-integral representation (12)  of the generalised Bessel 
functions. The result, exhibiting considerable fine structure, is graphically represented 
in figure 2 ( a ) .  

Although the evaluation of the generalised Bessel functions (6a ,  b )  by means of the 
representation (12)  is for large 1 much more efficient than by means of the expansion (7) 
or by integrating from 77 = 0 to 77 =   IT along the real axis, we can further reduce the 
computing time drastically with only a small sacrifice in accuracy by going over to an 
asymptotic expansion of (12) .  

This will be accomplished by the method of Chester et a1 (1957), where we first have 
to determine whether-as we vary the parameters of the problem-one or more of the 
saddle points Si, S2,  Si approach or even coalesce with the relevant saddle point St. By 
an examination of ( 9 4  b )  we find that startingfrom the situation in figure l ( b ) ,  where S1 
is close to Si, an appropriate variation of the parameters will induce the pairs S1, Si and 
S2,  Sk to approach symmetrically the point 77 = IT,  where the new pairs SI, S 2  and Si, Si 
form, which then move up and respectively down along the line x = IT, so that SI is now 
close to S 2 .  However, only the situation depicted in figure 1(b)  has to be taken into 
account, since in the situation where St is close to S2 or to all three remaining saddle 
points, the value of the functions (12)  is negligibly small. This can be simply established 
by observing that the exponential in the integrand of (12) is everywhere along the 
contour C1 smaller than at the saddle point. Hence, the value of exp(l Re[F(vs)]) is a 
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measure of the value of (12), and it is found that for SI close to Si (and for large 1) this 
quantity is many orders of magnitude larger than in the other cases. 

According to the work of Chester et a1 (1957) this suggests that we obtain a uniform 
asymptotic expansion of (12) (i.e. uniformly valid for all parameter combinations for 
which the value of (12) is not negligible), if in a next step we map the q plane onto a z 
plane according to 

where the third-degree mapping polynomial p3(Z) exhibits the same saddle-point 
configuration as that relevant for F ( q )  in the q plane, namely, two saddle points at 
zs = kd, which are close to each other for small values of Id\. If we map qs, onto z = d 
and qsi onto z = -d, we find (Leubner 1979) 

where d is understood to be real. From (13) we have 

so that the mapping (13) transforms (12) into 

The contour C, in the z plane is given by (10) and (15) as 

or, with 14a), as 

so that t..e integrand, apart from the slowly varying factors COS’ q and dq/dz, is again 
monotonic decreasing on either side of the saddle point z = d. 

So far, (16) is exact since only a transformation of variable has been performed. But 
Chester et a1 (1957) have shown that if this transformation of variable from the q plane 
to the z plane preserves the relevant configuration of saddle points, as it does in the 
present case, then by expanding the slowly varying factors cos’ q and dq/dz in the 
neighbourhood of the saddle point z = d and integrating term by term, an asymptotic 
expansion of (16) is obtained. As we shall see presently, the inclusion of only the first 
few terms of this expansion will be sufficiently accurate for our purposes. 

Following Chester eta1,(1957) we now expand cos’ 7 d7ld.z in apower series of the 
form 

 COS'^ dq/dz = C p j n h ’ ( ~ ~ - d ~ ) ~ + C  qjnh’Z(t2-d2)m, (18) 
m m 
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where the coefficients are found from repeated differentiation and use of the cor- 
respondence qs * d and q f ++ -d. For h = 0 we thus find 

PLO’ = Re(qi ) ,  

pio)  = (i/2d) Im(qg), 

pio)  = ( l /8d2)  Re(vY)-(i/8d3) Im(qg), 

450) = Im(qk), 

q!’) = (1/2d2) Re(qg)-(i /2d3) Im(qk), 

qio) = (i/8d3) Im(qg)-  (3/8d4) Re(qg)+ (3i/8d5) Im(qk), 

where the derivatives of q with respect to z ,  denoted by primes, evaluated at the saddle 
point SI, denoted by subscripts S,  are obtained explicitly by repeated differentiation of 
(13) and use of (8) and of sin qs which follows therefrom. By abbreviating cos q q ’  = J’, 
and differentiating this expression repeatedly, we find that the coefficients for A = 1 are 
again given by (19) with qk replaced by [k, qg by J g  etc. Inserting the expansions (18) 
into (16) and carrying out the integrations term by term, it can easily be shown (Chester 
et a1 1957) that by suitably integrating by parts the asymptotic expansion of (16) 
involves just the Airy function Ai and its derivative with respect to the argument Ai‘ in 
the form 

4. Discussion 

In order to test the accuracy of the asymptotic expansions (20) of the Jl,A ’s, we computed 
the amplitude of the 6 functions in t t e  cross section (1) in terms of (20). The result is 
shcwn in figure 2(b) ,  where the lettering is as in figure 2 ( a )  but has been omitted to 
distinguish the two diagrams which would otherwise be almost indistinguishatle. 
Obviously, the asymptotic expansion (20) of the generalised Bassel functions (6a, b )  is 
capable of reproducing all the details of these functions, however, at considerably less 
computing time: on the relatively slow local CDC 3300 computer, the approximately 
2000 points of figure 2(a) were generated ill more than three hours, while the same 
number of points in figure 2 ( b )  were generated in just over six minutes. 

With the accurate and easily computable asymptotic expansions (20) of the general- 
ised Bessel functions, we are now in a position to answer quantitatively and at very little 
calculational expense any question relating to high-intensity effects in the spontaneous 
incoherent backscattering of linearly polarised strong laser radiation from a relativistic 
electron beam. The problem depends on five relevant parameters, p, Ekln, 4, 6, w ,  of 
which only two can be varied at a time. In order to save space, we only show diagrams 
with 4 = 0, since the plane containing the direction of polarisation of the laser beam and 
of propagation of the electron beam is strongly favoured by the interesting high 
harmonic content of the emitted radiation. This is to be expected since in our classical 
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A 4 

3 ?L 

Figure 2. Comparison of the amplitude factor of the differential scattering cross section, 
equation (I), in units of the classical Thomson cross section VThr as computed with the help 
of (a) the exact contour-integral representation, equation (121, of the generalised Bessel 
functions, and [b)  their asymptotic expansion, equation (20), for the range of variables 
indicated in (a). The lettering in (b )  has been omitted in order to distinguish this diagram 
from (a). Both figures were generated on the same CDC 3300 computer with ( b )  taking only 
&of the computing time required for (a). Etin = 10, = 3,  I$ = 0, e,= 0.15, w,/wi = 1801. 
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model, with the electrons propagating oppositely to the laser beam, the velocity of the 
electrons has no component perpendicular to this plane. 

In order to contrast the results for linear polarisation with those for circular 
polarisation, we normalised the emitted frequency w and angle of observation 8 = i~ - 6 
to the so-called critical values w ,  and 8, of these quantities for the latter case. These are 
obtained by observing that in a circularly polarised electromagnetic wave of intensity ,U 

the electron would be forced to follow a certain helical trajectory (if radiation reaction is 
again neglected). From the transverse acceleration corresponding to this trajectory one 
can then derive by Jackson's (1975) general considerations a critical frequency w ,  and a 
critical angle e,, beyond which there is very little radiation in the 'circular' case. The 
graphical representations for the 'linear' case, figures 2-4, show that the 8, so derived 
may equally well serve as the characteristic angle for the present case, while the 
characteristic frequency for linear incident polarisation, especially for figures 2 and 3, is 
considerably larger than wc. 

The gross features of the cross section (l), however, are of course those of a 
relativistic spectrum (Jackson 1975). In particular, we see that higher harmonics are 
confined to smaller angles 8 than low ones. The same could be found from an 
examination of the cross section (1) for > 0 (which we do not show), where again for 
fixed e/@, high harmonics drop off more rapidly than low ones. 

Another feature, which is also not discernible in our selection of diagrams, is that for 
p = 1, corresponding to an incident intensity of 1, = 2-4  x 1 O I 8  W cm-*, the fundamen- 

Figure 3. Plot of the amplitude factor of the differential scattering cross section, equation 
( l ) ,  in units of the classical Thomson cross section uTh, for sets of parameters different from 
figures 2 ( a )  and 2(6). The meaning of the various symbols is as explained in the text; Ek," is 
measured in MeV, 6 and 0, in radians. Ekin = 10, ,U = 1, 4 = 0, = 0.08, w , / w ,  = 599. 
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e I ec 

Figure4. Asfigure 3,wi thEk, ,=1 ,  ~ = 3 , 4 = 0 ,  8,=1.19, w , / w , = 4 3  

tal frequency is the most intense in the scattered spectrum, while for ,u = 3, correspond- 
ing to  lo = 2-2 x 10’’ W cm-’ (and more pronounced so for still higher values of p) ,  a 
whole range of scattered harmonics is more intense than the fundamental one. 

Finally, by comparing figure 4 with figures 2 and 3, we note the characteristic 
increase in scattered power by several orders of magnitude as a result of increasing the 
injection energy of the electrons from Ekin = 1 MeV to Ekin = 10 MeV, a feature that 
was experimentally verified with incident microwave radiation by Granatstein et a1 
(1976), Buzzi et a1 (1977) and Pasour et a1 (1977). 

5. Conclusions 

As remarked in the Introduction, even for linear incident polarisation Goldman’s 
(1964) cross section (1) is very difficult to  observe in the interesting strongly nonlinear 
regime because of the requirement of a coherent source of optical radiation with an 
intensity parameter of p 9 1. Rather, the point of general interest in the foregoing 
investigation is the detailed and efficient analytical treatment of the generalised Bessel 
function, to  which Goldman’s problem gives rise in a very clear-cut manner. As also 
elaborated upon in the Introduction, these functions occur in a number of quantum 
problems of current interest through the use of Volkov solutions, an important one 
being the study of induced bremsstrahlung in the presence of an intense laser field (see 
e.g. Ehlotzky 1978, Kelsey and Rosenberg 1979, Schlessinger and Wright 1979). These 
investigations, however, are hampered by the unavailability of efficient methods to 
extract actual numbers out of these functions, since unlike in Goldman’s problem it 
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turns out (Ehlotzky 1978) that in the presence of the experimentally accessible intensity 
of W cm-’ one needs the behaviour of these functions for rather large values of 
their parameters. 

Ehlotzky (1978),  for example, justifiably argued that the standard description of the 
applied laser field in the electric dipole approximation might be inadequate in the 
scattering of an electron by a long-range Coulomb potential, but his analysis led to a 
cross section in terms of generalised Bessel functions in the unsuitable representation 
( 7 ) ,  and hence only crude qualitative estimates on the difference between the two 
descriptions could be given. With the help of the asymptotic representation (20), on the 
other hand, a quantitative evaluation of this difference would be straightforward, thus 
permitting a decision on the admissibility of the dipole approximation in the case of 
long-range potentials. 

We hope that the above detailed analysis will help to reduce the number of 
theoretical investigations that terminate prematurely at the representation ( 7 )  of the 
generalised Bessel function, and that it will enable potential users to establish an 
asymptotic expansion analogous to (20) also under slightly modified conditions, for 
example, when the parameters of the problem are such that the relevant configuration 
of saddle points is qualitatively different from the ones shown in figures l (a )  and l ( b ) .  
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